

 $Circular_{sky} \Rightarrow Native Linear \Rightarrow Hybrid \Rightarrow Circular$

Mr. Polarization, aka Carl

C band and L band have native linear receivers with hybrids

Quadridge OMT

Hybrids Convert From Native Linear to Circular

Both have equal amplitudes in both channels, but for circular the channels are offset by 90 degrees

Benefits/hazards of native linear to circular conversion

- Benefits of converting native linear to circular
 - To mitigate feed rotation with parallactic angle effects
 - Simplification of obtaining VLBI fringes
 - Native linear OMTs have wider bandwidths
- Hazards of converting to circular with a hybrid
 - The hybrid adds noise and phase instabilities

Transmitting circular polarization to C band receiver

RHC and LHC outputs of hybrid viewed on spectrum analyzer

Used network analyzer to measure power ratio: P_{LHC}/P_{RHC}

Optimum phase for conversion from linear to circular

Optimum phase for conversion from linear to circular

optimum $\sim 15^{\circ}$